What is a CRC32? CRC32 is one of hash functions based on on the "polynomial" division idea. The CRC is acronym for Cyclic Redundancy Code (other variants instead "Code" is "Check" and "Checksum") algorithm. The number 32 is specifying the size of resulting hash value (checksum) - 32 bits. The checksum is used to detect errors after transmission or storage of any piece of information. What is a MD5? The MD5 Message-Digest Algorithm is a widely used cryptographic hash function that produces a 128-bit (16-byte) hash value. Specified in RFC 1321, MD5 has been employed in a wide variety of security applications, and is also commonly used to check data integrity. MD5 was designed by Ron Rivest in 1991 to replace an earlier hash function, MD4. An MD5 hash is typically expressed as a 32-digit hexadecimal number. What is a SHA-1? In cryptography, SHA-1 is a cryptographic hash function designed by the United States National Security Agency and published by the United States NIST as a U.S. Federal Information Processing Standard. SHA stands for "secure hash algorithm". The three SHA algorithms are structured differently and are distinguished as SHA-0, SHA-1, and SHA-2. SHA-1 is very similar to SHA-0, but corrects an error in the original SHA hash specification that led to significant weaknesses. The SHA-0 algorithm was not adopted by many applications. SHA-2 on the other hand significantly differs from the SHA-1 hash function. What is a SHA-2? In cryptography, SHA-2 is a set of cryptographic hash functions (SHA-224, SHA-256, SHA-384, SHA-512) designed by the National Security Agency (NSA) and published in 2001 by the NIST as a U.S. Federal Information Processing Standard. SHA stands for Secure Hash Algorithm. SHA-2 includes a significant number of changes from its predecessor, SHA-1. SHA-2 consists of a set of four hash functions with digests that are 224, 256, 384 or 512 bits. In 2005, security flaws were identified in SHA-1, namely that a mathematical weakness might exist, indicating that a stronger hash function would be desirable. Although SHA-2 bears some similarity to the SHA-1 algorithm, these attacks have not been successfully extended to SHA-2. A new hash standard, SHA-3, is currently under development; an ongoing NIST hash function competition is scheduled to end with the selection of a winning function in 2012. The SHA-3 algorithm will not be derived from SHA-2. |